Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 4, 2026
-
A series of pyridine dipyrrolide actinide(IV) complexes, (MesPDPPh)AnCl2(THF) and An(MesPDPPh)2 (An = U, Th, where (MesPDPPh) is the doubly deprotonated form of 2,6-bis(5-(2,4,6-trimethylphenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine), have been prepared. Characterization of all four complexes has been performed through a combination of solid- and solution-state methods, including elemental analysis, single crystal X-ray diffraction, and electronic absorption and nuclear magnetic resonance spectroscopies. Collectively, these data confirm the formation of the mono- and bis-ligated species. Time-dependent density functional theory has been performed on all four An(IV) complexes, providing insight into the nature of electronic transitions that are observed in the electronic absorption spectra of these compounds. Room temperature, solution-state luminescence of the actinide complexes is presented. Both Th(IV) derivatives exhibit strong photoluminescence; in contrast, theU(IV) species are nonemissive.more » « less
-
Emergent, flowable electrochemical energy storage technologies suitable for grid-scale applications are often limited by sluggish electron transfer kinetics that impede overall energy conversion efficiencies. To improve our understanding of these kinetic limitations in heterometallic charge carriers, we study the role of solvent in influencing the rates of heterogeneous electron transfer, demonstrating its impact on the kinetics of di-titanium substituted polyoxovanadate-alkoxide cluster, [Ti 2 V 4 O 5 (OMe) 14 ]. Our studies also illustrate that the one electron reduction and oxidation processes exhibit characteristically different rates, suggesting that different mechanisms of electron transfer are operative. We report that a 1 : 4 v/v mixture of propylene carbonate and acetonitrile can lead to a three-fold increase in the rate of electron transfer for one electron oxidation, and a two-fold increase in the one electron reduction process as compared to pure acetonitrile. We attribute this behavior to solvent–solvent interactions that lead to a deviation from ideal solution behavior. Coulombic efficiencies ≥90% are maintained in MeCN–PC mixtures over 20 charge/discharge cycles, greater than the efficiencies that are obtained for individual solvents. The results provide insight into the role of solvent in improving the rate of charge transfer and paves a way to systematically tune solvent composition to yield faster electron transfer kinetics.more » « less
An official website of the United States government
